
www.manaraa.com

Selection Algorithms for Replicated Web Servers

Mehmet Sayal+, Yuri Breitbart*, Peter Scheuermann+, Radek Vingralek*

 + Northwestern University * Bell Laboratories
 Dept. of Electrical & Computer Eng. Lucent Technologies
 2145 Sheridan Rd 600 Mountain Avenue
 Evanston, IL 60208 Murray Hill, NJ 07974
 {mehmet, peters}@ece.nwu.edu {yuri,rvingral}@research.bell-labs.com

Abstract

Replication of documents on geographically
distributed servers can improve both performance
and reliability of the Web service. Server selection
algorithms allow Web clients to select one of the
replicated servers which is "close" to them and
thereby minimize the response time of the Web
service. Using client proxy server traces, we
compare the effectiveness of several “proximity”
metrics including the number of hops between the
client and server, the ping round trip time and the
HTTP request latency. Based on this analysis, we
design two new algorithms for selection of
replicated servers and compare their performance
against other existing algorithms. We show that
the new server selection algorithms improve the
performance of other existing algorithms on the
average by 55%. In addition, the new algorithms
improve the performance of the existing non-
replicated Web servers on average by 69%.

1. Introduction

Although the Web is becoming a widely
accepted medium for distributing all kinds of
data and services, it provides relatively poor
performance and low reliability. For example,
a multi-second response time for downloading
a 5 KB document is not unusual. Similarly, the
mean time to failure (MTTF) of Internet
servers has been measured as 15 days
[LMG95] which is significantly below the

levels found in other information systems such
as database servers [G90].

Replication of Web documents can improve
both performance and reliability of the Web
service. After a server failure, Web clients can
still satisfy their requests from another server,
which replicates the requested document.
Many popular Web sites already employ a
replication (mirroring) of their sites. For
example, users can select among 101 different
servers to download the Netscape browser, 15
different servers to access Yahoo in the US,
12 servers to access Lycos , 8 servers to access
America Online, 7 servers to access Alta Vista
and 3 servers to access Infoseek. However, the
server replication is not transparent to the
user; the user must manually select the server
which is “closest” to him/her to get a fast
response time. If that server does not respond,
the user must manually satisfy the request
from another replicated server.
We argue that server replication could and
should be completely transparent to the user.
In fact, we are in the process of designing a
system which provides such a mechanism. The
success of a transparent Web server
replication system critically depends on the
criteria used for selection of replicated servers,
which in turn depends on the exact notion of
“proximity” metric. The “proximity” metric
impacts both the response time perceived by
the user and the overhead involved in

www.manaraa.com

measuring the distance. There are several
ways to define “proximity” of a server and a
client: the number of hops between the client
and the server [GS95,F97], the geographic
proximity of the client and the server [GSe95],
the round trip time of a ping request sent from
the client to the server [CC95,IWR], and
finally the response time of an HTTP request
sent from the client to the server.

In this paper we empirically evaluate each of
the above proximity metrics using client traces
collected at Northwestern University. We
show that both the number of hops and the
ping round trip time are poor indicators of the
resulting HTTP request response time. Ideally,
the selection of replicated servers should be
based directly on the HTTP request response
time. However, since the HTTP request
response time depends on the document size,
which is unknown at the time of issuing a
request, we propose to use the HTTP request
latency as a substitute for the HTTP request
response time. We measure HTTP request
latency as the response time of servers for very
small documents. Given the fact that most
Web documents tend to be small, we show
experimentally that the HTTP request latency
and the HTTP request response time are
statistically highly correlated. We propose
two new algorithms for the selection of
replicated servers using the HTTP request
latency, and compare their performance with
other existing algorithms. We show that the
new server selection algorithms improve the
performance on the average by 55% when
compared to other existing algorithms. In
addition, the new algorithms improve the
performance on the average by 69% when
compared to the existing non-replicated Web
servers. At the same time, the new algorithms
incur only a minimal extra network overhead.

The paper is organized as follows: in Section 2
we present the results of our trace analysis. In

Section 3 we define two new algorithms for
server selection and evaluate their
performance. In Section 4 we discuss related
work and we conclude with Section 5.

2. Server Proximity Metrics

The HTTP server response time is the most
relevant metric from the users’ point of view
and ideally, it should be used by all clients to
determine the proximity of replicated servers.
However, the HTTP request response time
depends on network traffic, server load and
document size. Hence, using the HTTP
request response time as a metric for
proximity may lead to substantial overhead in
collecting measurements, given that these
factors fluctuate between different requests.
Therefore, several other metrics have been
used to approximate the HTTP request
response time.

The number of hops between a client and a
server is one common approximation
[GS95,F97]. Its primary advantage is that it is
relatively static. For example, it has been
shown that over 87% of routes remain stable
for at least six hours and 68% for at least
seven days [P97]. Moreover, the number of
hops can be obtained directly from the routing
tables without incurring any additional
network load. However, since the speed of
links may vary together with their load, it is
not a priori clear whether the number of hops
can provide any estimate of the HTTP request
response time.

In order to evaluate the relationship between
the number of hops and the HTTP request
response time, we have collected a client
proxy trace in our computer lab at
Northwestern University. The trace contains
approximately 15K HTTP GET requests
referencing 1348 distinct HTTP servers. We

www.manaraa.com

measured the number of hops between each
server referenced in the trace and a
corresponding client at Northwestern
University using the traceroute utility. The
histogram depicting the distribution of number
of hops is given in Figure 1. The distribution
is close to a normal distribution except for a
singularity, i.e., a peak at 4 hops, which is due
to other servers accessed on the campus of
Northwestern University.

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Number of Hops

N
u

m
b

er
 o

f
R

eq
u

es
ts

Figure 1: Distribution of hop distance of
servers from a Northwestern University client

(x-axis: # of hops; y-axis: # of requests).

We found that the correlation between the
number of hops and the HTTP request
response time is 0.16, which is relatively low.
Consequently, the number of hops between a
client and a server gives very little indication
of the response time that an HTTP server
might deliver to the client. Our finding is
consistent with that of Crovella and Carter
[CC95], who report a similar result.
The round trip time of the packets sent by the
ping utility [S94] is another common metric
for Internet host proximity [CC95, IWR].
Unlike the number of hops, the ping round trip
time reflects the network load on the route
between the client and the server. However,
the ping round trip time does not provide any
indication of the load and speed of the HTTP

server. In order to ascertain the degree of
dependency between the ping round trip time
and the HTTP request response time, for every
HTTP request in the trace we sent a ping
request to the server holding the requested
document immediately after receiving a
response. This is done in order to guarantee
that the network load remains relatively stable.
We have found that the correlation between
the ping round trip time and the HTTP request
response time is 0.51. Although the value is
higher than the correlation between the
number of hops and the HTTP request
response time, it still does not constitute a
high reliability indicator to be used in
predicting the HTTP request response time.

Another possibility is to assume that the
HTTP request response times are stable within
a short period of time and to estimate the
response time of a new HTTP request from the
response times of HTTP requests previously
sent to the same server. However, the response
time also depends on the size of the document,
which is not known at the time the document
is requested. Instead, we propose to use the
HTTP request latency, i.e., time to receive the
first byte of a response, as a substitute for
estimating the HTTP request response time.
The HTTP request latency can be viewed as
HTTP response time for very small
documents. We argue that this substitute,
which is independent of the document size, is
likely to be a good predictor of the HTTP
request response time because most Web
documents tend to be small. For example,
90% of referenced documents in our traces are
smaller than or equal to 10 KB, as it is shown
in Figure 2. The distribution of document
sizes referenced in the traces can be found in
Figure 3. In our traces we have found that the
correlation between the HTTP latency and the
HTTP request response time is 0.73. This
correlation is 356% higher than that of the

www.manaraa.com

number of hops and 43% higher than that of
the ping round trip time.

Smaller than or
equal to 10 KB.

90%

Larger than 10
Kilobytes

10%

Figure 2: Percentages of small vs. large files in
our traces.

0

2000

4000

6000

8000

10000

12000

14000

1 11 21 31 41 51 61 71 81 91

File Size (KB)

of

 R
eq

ue
st

s

Figure 3: Distribution of sizes of referenced
documents in our traces

(x-axis: file size; y-axis: # of requests).

3. Server Selection Algorithms

Based on the analysis carried out in the
previous section, we introduce two new server
selection algorithms: Probabilistic and
Refresh. Both of the algorithms select a server
that provided the minimal latency for
previously sent HTTP requests.

A straightforward implementation of such an
algorithm leads to a form of starvation. Once a

client selects a given server as its closest
server, it keeps directing all of its requests to
that server and is not responsive at all to
changes in the HTTP request latencies of the
“non-optimal” servers. Hence, the fact that the
load of these servers could increase or
decrease over time is not considered by the
client and these non-optimal servers could
starve. Consequently, there is a need for some
mechanism that will enable clients to refresh
the latency information associated with the
“non-optimal” servers.

The Probabilistic algorithm refreshes the
latency information associated with the "non-
optimal" servers in a manner similar to
simulated annealing. Rather than always
sending requests to the closest server, the
requests are sent to every server with a
probability inversely proportional to the most
recently measured latency for the server.
Consequently, most of the time the requests
are sent to close servers, but from time to time
the requests are also sent to more distant
servers in order to refresh their latency
information. The drawback of the Probabilistic
algorithm is that it has no control over how
often it sends requests to "non-optimal"
servers which is directly dictated by the
measured HTTP request latencies. On the
other hand, the algorithm does not generate
any extra requests to refresh the latency
information associated with the "non-optimal"
servers.

The Refresh algorithm always sends all
requests to the server with the least HTTP
request latency. However, each latency value
is given only a limited valid time. After the
valid time has expired, a new latency value is
obtained by sending an extra asynchronous
HTTP HEAD request to the corresponding
server. Unlike the Probabilistic algorithm, the
Refresh algorithm generates extra requests to
refresh the latency information of non-optimal

www.manaraa.com

servers. However, it is possible to explicitly
control the number of such requests by
changing the setting of the valid time
parameter.

We have compared the performance of the
Probabilistic and the Refresh algorithms
against other published server selection
algorithms. In particular, we considered the
following algorithms in the comparison:

1. Fixed: Client sends all requests to a fixed
server. This algorithm reflects the current
situation on the Web with no server
replication.

2. Ping:Client periodically sends a ping
request to each server and redirects all
HTTP requests to the server with minimal
ping round trip time [CC95].

3. Hops: Client sends all requests to a server
that has the closest distance from the client
in terms of the number of hops [GS95].

4. Parallel: Client sends parallel requests to
all servers replicating the document and
waits for the first response.

5. Probabilistic: The probability that a given
server is selected is given by

Probi = K / lati,
 where lati is the average HTTP request
latency on server i and K is normalizing
constant defined as K = 1 / Σi(1/lati).

6. Refresh: The server with the minimal
HTTP request latency is chosen. Each
latency sample is assigned a “valid time”.
After the valid time expires, the samples
are refreshed using an extra HEAD request
sent asynchronously to the server.

To study the scalability of these six algorithms
we have conducted two sets of experiments,
one with 50 servers and another one with 5
servers chosen out of the first set of 50
servers. Recently, several Internet service
providers started to replicate documents on the
Web. For example such popular service

providers as Yahoo, Netscape, America
Online, NCSA, replicate their most popular
documents on 3 to 101 different servers.
Consequently, we selected a degree of
replication from 5 to 50. The servers that we
used in our experiments were selected in top-
down popularity order as measured by our
trace. We excluded the servers at
Northwestern University campus in order to
ensure that the server selection is indeed non-
trivial. In each experiment, we assumed that
the same document is replicated on all servers.
Since, in reality the servers contained distinct
documents with different sizes, we measured
only the latency of HTTP request which is
independent of the document size.

We implemented our experiment as a Java
application that acts like a Web client, and
sends requests to selected Web servers by
using the algorithms explained above. For
each algorithm, it selects the server(s) using
the algorithms one by one, sends requests, and
records latencies separately for each one. We
repeated experiments 2000 times, each time
measuring the latency for every single
algorithm, in order to achieve 95% confidence
intervals within 5% of the reported average
latency values. We ran the same series of
experiments during daytime and nighttime in
order to study the impact of network load on
the performance of the evaluated algorithms.
All experiments are performed on the real
network using our Web client program. This
may rise some concerns about the server
configurations; some servers may be not be
properly configured, and can affect our test
results by unusually long latencies.
Unfortunately, we do not have any control on
the Web servers. Even if there are some mis-
configured servers in our traces, we believe
that it reflects a reality about the Web traffic,
which could not have been recognized in a
simulation. Therefore, we believe that server

www.manaraa.com

configuration is not an issue to worry about in
our experiments.

The reported latencies for the Ping,
Probabilistic and Refresh algorithms include
the latencies measured during an initial warm
up period in which the client collected latency
samples for all servers in the replication
group. In order to choose servers based on
previous measurements, the client has to have
at least one measured value for each server to
start with. We set the “valid time” parameter
of the Refresh algorithm to three minutes in all
experiments. This value was chosen to be
larger than the longest possible latency, and
calculated using the mean and standard
deviation of measured latency values in our
trace.

637.91

553.24

370.4

305.67

259.64

93.49

158.82

203.47

92.57

317.25

483.86457.18

0

100

200

300

400

500

600

700

Fixed Host Hops Ping Parallel Probabilistic Refresh

A
vg

. H
T

T
P

 R
eq

u
es

t
L

at
en

cy
 (

m
s)

Day

Night

Figure 4: Average HTTP request latencies for
5-server replication group

(x-axis: algorithm names; y-axis: latencies.

The results of the experiments for the 5-server
replication group are depicted in Figure 4,
while the results for 50-server replication
group are given in Figure 5. In both cases, the
results reported for the Fixed algorithm
correspond to an average HTTP request
latency calculated across all servers in the
given replication group.

As expected, the Parallel algorithm provides
the best latency in all cases. However, it is
important to observe here that the results of
the Parallel algorithm do not reflect the
situation where all clients on the Web employ
the same server selection strategy. If this were
the case, additional significant network delays
would also have been encountered even for
low degrees of server replication (5-server
case) because five times as many requests
would have been generated.

1779.02

1256.51

267.43

595.37

421.61

87.32

725.77

632.46

517.13

136.29

412.02

82.15

0

200

400

600

800

1000

1200

1400

1600

1800

Fixed Host Hops Ping Parallel Probabilistic Refresh

A
vg

. H
T

T
P

 R
eq

u
es

t
L

at
en

cy
 (

m
s)

Day

Night

Figure 5: Average HTTP request latencies for
50-server replication group

(x-axis: algorithm names; y-axis: latencies.

Among the remaining algorithms, the Refresh
algorithm consistently provides the best
latency. The Probabilistic algorithm leads to a
slightly higher latency, on the average 38% (at
least 15%, at most 66%) higher than the
Refresh algorithm, but does not generate any
additional network load. Both algorithms also
outperform the Hops and Ping algorithms on
the average by 55% (the improvements range
from a minimum of 29% to a maximum of
78%), confirming the results from Section 2.
All server selection algorithms, with the
exceptions of nighttime for Hops and Ping,
outperform the Fixed algorithm. With a smart
choice of server selection algorithm, i.e., using
either the Probabilistic or Refresh algorithm,

www.manaraa.com

server replication improves the latency of the
HTTP service on the average by 69% (the
minimum improvement is 35%, while the
maximum is 84%). Finally, it is important to
observe that the Probabilistic and Refresh
algorithms are the only ones that can be used
indiscriminately with respect to the time of the
day, i.e., changing network load, without
causing too much extra load on the network
and the client machine. As it is shown in
Figures 4 and 5, during nighttime the Fixed
algorithm outperforms either Ping or Hops,
depending on server replication factor.

4. Related Work

The performance benefits of server replication
have been recognized in [B95, GSe95].
Caching goes Replication (CgR) [BMS96] and
Smart Clients [YCE97] are two mechanisms
for replication of HTTP, telnet or ftp services
on top of the existing Web infrastructure. Both
CgR clients and Smart clients can utilize the
server selection mechanisms described in our
paper.

Several algorithms for selection of replicated
servers on the Web have been designed
[CC95,GS95,GSe95,F97,IWR]. The
algorithms are based on the distance in
number of hops [GS95,F97], geographic
proximity [GSe95] or ping round trip time
[IWR]. However, with the exception of
[CC95], none of the previous work studies the
performance of their algorithms nor compares
them with other algorithms.

Several HTTP server selection algorithms
have been studied in [CC95]. The authors
compare algorithms similar to the Fixed, Ping,
Hops and Parallel algorithms described in our
paper. In addition, the authors also study a
random selection algorithm and an algorithm
based on geographic proximity [GSe95].

Similarly to our own work, the algorithms’
performance is compared using client proxy
traces. The authors consider a replication
group of 10 servers. Their finding that the
Ping algorithm outperforms the Hops
algorithm, which in turn outperforms the
Fixed algorithm, is consistent with our own
results.

Web server replication is also closely related
to Web proxy caching in that they both
improve the response time perceived by the
user. However, there are important
differences: Replicated Web servers can
provide dynamically generated documents,
while proxy caches cannot. Proxy caches
provide only a weak consistency of the cached
documents dictated by the HTTP protocol,
while replicated servers can enforce arbitrarily
strong consistency guarantees (for example,
one copy serializability). Finally, replicated
server increase end-to-end reliability of the
service, while proxy server introduce a single
point of failure.

5. Conclusions

We have studied several algorithms for
selection of replicated HTTP servers. Based
on a client trace that we have collected, we
show that neither the number of hops nor the
ping round trip time is a good predictor of the
HTTP request response time. On the other
hand, our results demonstrate that the HTTP
request latency, which we measure as the
response time for very small documents, is a
good predictor of the HTTP request response
time, mostly because the majority of Web
documents tend to have a small size.

We propose two new algorithms, Probabilistic
and Refresh, which utilize the HTTP request
latency and incur only minimal extra
overhead. Using client traces, we compare the

www.manaraa.com

performance of both algorithms against other
existing replicated server selection algorithms.
We show that the new algorithms consistently
outperform the best of the existing algorithms,
namely the Ping or Hops algorithm based on
replication rate, by 55% on the average, and in
many cases by a factor of two. We also show
that both of the new algorithms improve the
performance of the existing Web (i.e. the
Fixed algorithm) in the range of a factor of
two and four. The experiments reported here
are part of a larger system design effort that is
aimed at achieving a scaleable client/server
architecture for the Web that allows for data
migration and replication.

References

[B95] A. Bestavros. "Demand-based
resource allocation to reduce traffic and
balance load in distributed information
systems", Proceedings of the 7th IEEE
Symposium on Parallel and Distributed
Processing, 1995.

[BMS96] M. Baentsch, G. Molter, P.
Sturm. "Introducing application-level
replication and naming into today’s Web",
Computer Networks and ISDN Systems, vol.
28, 1996.

[CC95] M.E. Crovella, R.L. Carter.
“Dynamic Server Selection in the
Internet.” Proceedings of the Third
IEEE Workshop on the Architecture
and Implementation of High
Performance Communication
Subsystems (HPCS’95), June 1995.

[F97] P. Francis. "A Call for an
Internet-wide Host Proximity
Service(HOPS)", available at
http://www.ingrid.org/hops/wp.html.

[G90] J. Gray. “A Census of Tandem
System Availability Between 1985 and
1990.” Technical Report 90.1, Tandem
Computers, January 1990.

[GS95] J.D. Guyton, M.F.Schwartz.
“Locating Nearby Copies of Replicated
Internet Services.” SIGCOMM’95,
Cambridge, MA, USA., pp. 288-298,
1995.

[GSe95] J. Gwertzman, M. Seltzer. "The
Case for Geographical Push-Caching",
Proceedings of the Fifth IEEE
Workshop on Hot Topic in Operating
Systems, 1995.

[IWR] "Internet Weather Report
(IWR)", available at
http://www.mids.org/.

[LMG95] D. Long, A. Muir, R. Golding.
“A Longitudinal Survey of Internet
Host Reliability.” Proceedings of the
14th Symposium on Reliable
Distributed Systems, 1995.

[P97] V. Paxon. "End-to-End
Routing Behavior in the Internet", ACM/IEEE

 Transactions on Networking, vol. 5,
no. 5, 1997.

[S94] W.Stevents. “TCP/IP
Illustrated”, Volume1, Addison-Wesley, 1994.

[YCE97] C. Yoshikawa, B. Chun, P.
Eastham, A. Vahdat, T. Anderson, D. Culler.
"Using Smart Clients to Build Scaleable
Services", Proceedings of USENIX’97, 1997.

